久久无码人妻一区二区三区午夜_久久久久精品久久久久影院蜜桃_亚洲综合欧美色五月俺也去_交换娇妻呻吟声不停中文字幕

產品展廳收藏該商鋪

您好 登錄 注冊

當前位置:
世聯博研(北京)科技有限公司>>impetux,Cygnium™ G-422,LUNAM T-40i,DEIMUS T-10i細胞組織力學側量光鑷,細胞力學光鑷,多光阱細胞力學生物分子力學光鑷,單細胞力學光鑷,單分子力譜光鑷,馬達蛋白光鑷,微流變學光鑷>>impetux,Cygnium™ G-422,LUNAM T-40i,DEIMUS T-10i細胞組織力學側量光鑷,細胞力學光鑷,多光阱細胞力學生物分子力學光鑷,單細胞力學光鑷,單分子力譜光鑷,馬達蛋白光鑷,微流變學光鑷>>SENSOCELL光鑷細胞組織力學特性定量測試分析光鑷

細胞組織力學特性定量測試分析光鑷

返回列表頁
  • 細胞組織力學特性定量測試分析光鑷

收藏
舉報
參考價 211
訂貨量 1
具體成交價以合同協議為準
  • 型號 SENSOCELL光鑷
  • 品牌 其他品牌
  • 廠商性質 代理商
  • 所在地 北京市

在線詢價 收藏產品 加入對比 查看聯系電話

更新時間:2020-01-13 12:24:06瀏覽次數:1303

聯系我們時請說明是化工儀器網上看到的信息,謝謝!

產品簡介

產地類別 進口 價格區間 面議
應用領域 醫療衛生,生物產業    
細胞組織力學特性定量測試分析系統在活細胞或3D組織內部執行同時進行力測量和主動/被動微流變測試的256個光學陷阱實驗。同時捕獲256個目標分子或者粒子,浸沒式細胞或組織力學特性定量測量,無需校準

詳細介紹

細胞組織力學特性定量測試分析系統

在活細胞或3D組織內部執行同時進行力測量和主動/被動微流變測試的256個光學陷阱實驗。同時捕獲256個目標分子或者粒子,浸沒式細胞或組織力學特性定量測量,無需校準。

基本功能概述
陷阱的產生和處理
免校準力測量
振蕩程序
功率譜采集
主動和被動微流變學

粒子操縱和力測量
光阱的產生
粒子操縱
免校準力測量

應用概述:
細胞操作
細胞粘附力
細胞間相互作用
繩索牽引
細胞拉伸
主動和被動微流變學

Papers:

 

  • R. Meissner, N. Oliver and C.Denz. “Optical Force Sensing with Cylindrical Microcontainers“.Part. Part. Syst. Charact. 2018, 1800062.
  • F.Català, F. Marsà, M. Montes Usategui, A. Farré & E. Martín-Badosa. “Influence of experimental parameters on the laser heating of an optical trap“. Sci. Rep. 7, 16052; doi:10.1038/s41598-017-15904-6 (2017).
  • Català, F. et al. “Extending calibration-free force measurements to optically-trapped rod-shaped samples“. Sci. Rep. 7, 42960; doi: 10.1038/srep42960 (2017).

Optical trapping has become an optimal choice for biological research at the microscale due to its noninvasiveperformance and accessibility for quantitative studies, especially on the forces involved inbiological processes. However, reliable force measurements depend on the calibration of the opticaltraps, which is different for each experiment and hence requires high control of the local variables,especially of the trapped object geometry. Many biological samples have an elongated, rod-likeshape, such as chromosomes, intracellular organelles (e.g., peroxisomes), membrane tubules, certainmicroalgae, and a wide variety of bacteria and parasites. This type of samples often requires severaloptical traps to stabilize and orient them in the correct spatial direction, making it more difficult todetermine the total force applied. Here, we manipulate glass microcylinders with holographic opticaltweezers and show the accurate measurement of drag forces by calibration-free direct detection ofbeam momentum.

  • R. Bola, F. Català. M. Montes-Usategui, E. Martín-Badosa. Optical tweezers for force measurements and rheological studies on biological samples”.15th workshop on Information Optics (WIO), 2016.

Measuring forces inside living cells is still a challenge due the characteristics of the trapped organelles (non-spherical, unknown size and index of refraction) and the cell cytoplasm surrounding them heterogeneous and dynamic, non-purely viscous). Here, we show how two very recent methods overcome these limitations: on the one hand, forces can be measured in such environment by the direct detection of changes in the light momentum; on the other hand, an active-passive calibration technique provides both the stiffness of the optical trap as well as the local viscoelastic properties of the cell cytoplasm.

  • Martín-Badosa, F. Català, J. Mas, M. Montes-Usategui, A. Farré, F. Marsà. “Force measurement in the manipulation of complex samples with holographic optical tweezers” 15th workshop on Information Optics (WIO), 2016.
  • Derek Craig, Alison McDonald, Michael Mazilu, Helen Rendall, Frank Gunn-Moore, and Kishan Dholakia. “ Enhanced Optical Manipulation of Cells Using Antireflection Coated Microparticles”.ACS Photonics, 2 (10), pp 1403–1409, (2015).

    In molecular studies, an optically trapped bead may be functionalized to attach to a specific molecule, whereas in cell studies, direct manipulation with the optical field is usually employed. Using this approach, several methods may be used to measure forces with an optical trap. However, each has its limitations and requires an accurate knowledge of the sample parameters.6,7 In particular, force measurements can be challenging when working with nonspherical particles or in environments with an inhomogeneous viscosity, such as inside the cell. Recent developments in the field are moving toward obtaining direct force measurements by detecting light momentum changes. For this approach, the calibration factor only comes from the detection instrumentation and negates the requirement to recalibrate for changes in experimental conditions”.

  • Xing Ma, Anita Jannasch, Urban-Raphael Albrecht, Kersten Hahn, Albert Miguel-López, Erik Schäffer, and Samuel Sánchez. “Enzyme-Powered Hollow Mesoporous Janus Nanomotors”. Nano Lett., 15 (10), pp 7043–7050, (2015).

    “Using optical tweezers, we directly measured a holding force of 64 ± 16 fN, which was necessary to counteract the effective self-propulsion force generated by a single nanomotor. The successful demonstration of biocompatible enzyme-powered active nanomotors using biologically benign fuels has a great potential for future biomedical applications.”

  • Michael A. Taylor, Muhammad Waleed, Alexander B. Stilgoe, Halina Rubinsztein-Dunlop and Warwick P. Bowen. “Enhanced optical trapping via structured scattering“. Nature Photonics 9,669–673 (2015)
  • Gregor Thalhammer, Lisa Obmascher, and Monika Ritsch-Marte, “Direct measurement of axial optical forces“.Optics Express, Vol. 23, Issue 5, pp. 6112-6129 (2015)
  • Y. Jun, S.K. Tripathy, B.R.J. Narayanareddy, M. K. Mattson-Hoss, S.P. Gross, “Calibration of Optical Tweezers for In Vivo Force Measurements: How do Different Approaches Compare?”. Biophysical Journal, V 107, 1474-1484 (2014).

    Here, the authors present a comparison between two different methods for measuring forces inside living cells and provide measurements of the stall force of kinesin in vivo using the momentum-based approach. More information at:bioweb.bio.uci.edu/sgross/publications.html

  • A. Farré, E. Martín-Badosa, and M. Montes-Usategui, “The measurement of light momentum shines the path towards the cell”, Opt. Pur Apl. 47, 239-248 (2014).
  • A. Farré, F. Marsà, and M. Montes-Usategui, “A force measurement instrument for optical tweezers based on the detection of light momentum changes”, Proc. SPIE 9164, 916412 (2014).
  • J. Mas, A. Farré, J. Sancho-Parramon, E. Martín-Badosa, and M. Montes-Usategui, “Force measurements with optical tweezers inside living cells”,  Proc. SPIE 9164, 91640U (2014).
  • F. Català, F. Marsà, A. Farré, M. Montes-Usategui, and E. Martín-Badosa, “Momentum measurements with holographic optical tweezers for exploring force detection capabilities on irregular samples”, Proc. SPIE 9164, 91640A (2014).
  • A. Farré, F. Marsà, and M. Montes-Usategui, “Optimized back-focal-plane interferometry directly measures forces of optically trapped particles” Opt. Express 20, 12270-12291 (2012).

    This manuscript shows the relation between the determination of momentum measurements and back-focal-plane interferometry, and details how to obtain the force response of the sensor both from first principles and from its connection with trap stiffness calibration.

  • A. Farré and M. Montes-Usategui, “A force detection technique for single-beam optical traps based on direct measurement of light momentum changes” Opt. Express 18, 11955-11968 (2010).

 In this work, the authors show the feasibility of combining optical tweezers (single-beam gradient traps) with the determination of forces using the measurement of the light momentum change.

收藏該商鋪

登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時間回復您~

對比框

產品對比 產品對比 聯系電話 二維碼 意見反饋 在線交流

掃一掃訪問手機商鋪
86-010-67529703
在線留言
主站蜘蛛池模板: 天等县| 界首市| 奈曼旗| 扬州市| 苏州市| 金川县| 安龙县| 江安县| 施甸县| 湾仔区| 海阳市| 阜平县| 仙居县| 女性| 沙田区| 进贤县| 赤壁市| 五大连池市| 贺州市| 民县| 沁阳市| 南川市| 永嘉县| 富顺县| 扎囊县| 天峻县| 涡阳县| 乌恰县| 清远市| 阿拉善左旗| 隆德县| 天峨县| 双城市| 曲麻莱县| 温州市| 富顺县| 翁源县| 海南省| 伊川县| 崇礼县| 平度市|