公司動態
撫生試劑-《科學》發表化學所關于自組裝分子機器的合作研究成果
閱讀:151 發布時間:2014-5-20納米生物分子機器廣泛地存在于生物體的重要生理過程中,并發揮重要作用。如何通過化學自組裝方法來構筑分子機器,并研究其*的作用和功能是生物學、化學、物理學和超分子化學等交叉領域中一個十分富有挑戰性的研究課題。
在國家自然科學基金委和中國科學院支持下,化學研究所光化學院重點實驗室江華研究員領導的課題組與歐洲化學生物學研究所(法國)Ivan Huc教授合作,在人工合成分子機器研究中取得重要進展,通過動態組裝構建了基于螺旋與線型分子主客體相互作用的分子機器,并在分子水平上實現對其運動的調控。這一研究結果發表在3月4日的《科學》雜志(Science, 2011,331(6021),1172-1175)上。
在前期研究中,該課題組設計合成了喹啉螺旋基元及其低聚物,并發現喹啉酰胺低聚物通過分子內氫鍵自組裝形成單螺旋、雙螺旋和四束螺旋超分子聚集體結構,晶體結構揭示這些螺旋折疊體具有一個納米螺旋空腔。在此基礎上,研究人員螺旋空腔兩端引入不同的螺旋基元分別構筑了具有封閉空腔的單螺旋和雙螺旋分子膠囊,該螺旋分子膠囊與不同鏈長的烷基二元醇形成主客體超分子絡合物。相關研究結果分別發表在Angew. Chem. Int. Ed. 2008, 47, 1715;Angew. Chem. Int. Ed. 2008, 47, 4153 (DOI:10.1038/ nchem.9);Chem. Eur. J. 2009, 15, 11530;ChemComm. 2010, 46 (2), 297。這些成果為設計輪烷類分子機器奠定了堅實的基礎。
在經典的輪烷分子機器中,環狀分子必須通過不可逆的方式固定在線型客體分子上,因此在合成這類分子機器時面臨很大困難和挑戰。為了突破這些制約,研究人員采用了動態自組裝方法使螺旋分子很慢地纏繞到線型客體分子上,一旦形成螺旋-線型分子主客體絡合物后,螺旋分子就能夠在線型分子上快速運動而不發生離解。在主客體絡合物形成過程中螺旋分子發生解折疊和再折疊,同時螺旋分子的長度必須和線型分子的絡合點嚴格匹配,但是不要求二者間的不可逆固定,這是與經典的輪烷分子機器的顯著不同,也是合成該類分子機器的zui大優勢。研究人員利用質子化和去質子化,實現了對螺旋分子運動的調控。
該研究工作所建立的模塊設計和動態組裝方法為設計新型多位點控制的超分子自組裝體系開辟了新途徑。